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The statistical kinematical X-ray diffraction theory is developed to describe

reciprocal-space maps (RSMs) from deformed crystals with defects of the

structure. The general solutions for coherent and diffuse components of the

scattered intensity in reciprocal space are derived. As an example, the explicit

expressions for intensity distributions in the case of spherical defects and of a

mosaic crystal were obtained. The theory takes into account the instrumental

function of the triple-crystal diffractometer and can therefore be used for

experimental data analysis.

1. Introduction

Triple-crystal diffractometry is widely used for the analysis of

the structural characteristics of monocrystals and hetero-

epitaxic systems (Iida & Kohra, 1979; Zaumseil & Winter,

1982a,b; Lomov et al., 1985). At present, X-ray reciprocal-

space mapping (RSM) is a very promising method for such

investigations (Faleev et al., 1999).

Various versions of the kinematical theory have been used

for an evaluation of the scattered intensity around a reci-

procal-lattice node. HolyÂ et al. (1994) have applied a form-

alism based on the mutual coherence function to investigate

the defects in epitaxic layers. The modi®ed Krivoglaz (1996)

kinematical approach is used by Kaganer et al. (1997) for

evaluation of diffusely scattered intensity in a reciprocal space

from heteroepitaxic structures with mis®t dislocations.

Using the statistical dynamical diffraction formalism (Kato,

1980a,b; Pavlov & Punegov, 1998a,b), we have developed the

theory for the case of so-called triple-crystal diffractometry

(Pavlov & Punegov, 2000). The general expressions for

coherently and diffusely scattered intensity in reciprocal space

are obtained. In this theory, instead of Kato's correlation

length � (the case of a spherical incident wave) (Kato, 1980a,b)

or Bushuev's correlation length �(!) (Bushuev, 1989) (the

case of a plane incident wave in double-crystal diffrac-

tometry), a correlation area �(!,") is introduced, where ! is

the angular deviation of the sample, " is the angular deviation

of the crystal analyzer. Though the theory (Pavlov & Punegov,

2000) is most general and may be applied for crystals of any

thickness, however, expressions for coherently and diffusely

scattered intensities are very complicated for practical use.

The experimental intensity distributions in reciprocal space

contain both coherent and diffuse components (Faleev et al.,

1999). Meanwhile, in most cases, either pure diffuse scattering

(HolyÂ et al., 1994; Kaganer et al., 1997) or coherent scattering

solely (Pavlov et al., 1999) is taken into account. The simul-

taneous account of coherent and diffuse components of the

scattered intensity allows one to obtain the most complete

information about the structure under investigation (HolyÂ et

al., 1995; Darhuber et al., 1997).

The aim of this paper is to develop the statistical kinema-

tical theory applied to triple-crystal diffractometry taking into

account charge density and interplanar spacing variations. The

in¯uence of the instrumental function of the triple-crystal

diffractometer on formation of a RSM is discussed.

2. Basic equations

Let us assume the plane monochromatic X-ray wave to be

incident on a crystal surface that coincides with the XY plane

and the plane of diffraction with the XZ plane of the Cartesian

coordinates system (see Fig. 1). In the kinematical diffraction

theory, which neglects the multiple rescattering of the waves,

the amplitudes of transmitted and re¯ected waves are found

from the following system of equations:
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�0�r� � ��0�r�=�
0; �h�r� � ��h�r�C=�
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� � 2�! sin�2�B�=�
h; 
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h:

Here � is the X-ray wavelength, �B the kinematical Bragg

angle of the diffracting planes with the reciprocal-space vector

h, C the polarization factor, �0,h the Fourier components of the



crystal susceptibility, u(r) the atomic planes displacements

function. Equations (1) are the well known Takagi equations

(Takagi, 1969) but without the rescattering term from the

diffracted wave to the transmitted one. We consider the most

general case of a crystal with an arbitrary variation of the

interplanar spacing and the composition, therefore the Fourier

components of the crystal susceptibility are coordinate

dependent. We restrict ourselves to consideration of the Bragg

diffraction geometry only, so the directing sines 
0,h and

asymmetry factor b are positive.

As the ®rst equation of (1), for the transmitted wave E0(r),

is independent of the second one, its solution can be easily

obtained in the form

E0�r� � E0�xÿ cot �1z; y; 0��0�r�; �2�

�0�r� � exp i
Rz
0

�0�x� cot �1�sÿ z�; y; s� ds

� �
:

To obtain the analytic solution for the diffracted wave, it is

convenient to renormalize its amplitude Eh in the following

way:

Eh�r� � ~Eh�r� exp�ÿi�z�=�h�r�; �3�

�h�r� � exp ib
Rz
0

�0�xÿ cot �2�sÿ z�; y; s� ds

� �
:

As a result, the second equation (1) takes the form

cot �2
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� �
~Eh�r� � i�h�r� expfi��zÿ hu�r��g

���r�E0�xÿ cot �1z; y; 0�; �4�
where ��r� � �0�r��h�r�.

Let us carry out a transition from the ®eld ~Eh�r� to its

Fourier image ~Eh�qx; qy; z�, which is:

~Eh�qx; qy; z� � �1=2�� R�1
ÿ1

dx
R�1
ÿ1

dy ~Eh�x; y; z�

� exp�ÿi�qxx� qyy��: �5�
As a result, (4) is transformed to the form:

iqx cot �2 ÿ
@
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Z �1
ÿ1

dx

Z �1
ÿ1

dy �h�r� expfi��zÿ qxxÿ qyyÿ hu�r��g
���r�E0�xÿ cot �1z; y; 0�: �6�

After replacement,

~Eh�qx; qy; z� � Êh�qx; qy; z� exp�iqx cot �2z�; �7�
the last equation is written as:

ÿ @Êh�qx; qy; z�
�z

� i

2�

Z �1
ÿ1

dx

Z �1
ÿ1

dy �h�r� expfÿi�qr

� hu�r��g��r�E0�xÿ cot �1z; y; 0�; �8�
where we took into account that � � cot �2qx ÿ qz (see

Appendix A).

Its solution can be presented as a sum:

Êh�qx; qy; z� � Êh�qx; qy; z � l� � �i=2�� Rl
z

dz0
R�1
ÿ1

dx
R�1
ÿ1

dy

� �h�r� expfÿi�qr� hu�r��g��r�
� E0�xÿ cot �1z0; y; 0�; �9�

where the second term describes the diffracted wave from the

surface layer of thickness l and the ®rst one from the under-

lying crystal (e.g. a substrate).

On the entrance surface of the crystal,

Eh�qx; qy; z � 0� � Êh�qx; qy; z � 0� and it is written as

Eh�qx; qy; z � 0�

� Êh�qx; qy; z � l� � �i=2�� Rl
0

dz
R�1
ÿ1

dx
R�1
ÿ1

dy �h�r�

� expfÿi�qr� hu�r��g��r�E0�xÿ cot �1z; y; 0�: �10�
Let us consider separately the ®rst term in (10). In accordance

with (7) and (3), we have

Êh�qx; qy; z � l� � �Eh�qx; qy; z � l� 
�h�qx; qy; z � l��qx;qy

� exp�ÿiqzl�: �11�
Here the symbol 
 designates a convolution over qx and qy

variables:

�f �qx; qy� 
 g�qx; qy��qx;qy

� �1=2�� R�1
ÿ1

d�x

R�1
ÿ1

d�y f �qx ÿ �x; qy ÿ �y�g��x; �y�:

The solution for Eh�qx; qy; z � l� in the case of a semi-in®nite

uniform crystal (substrate) is straightforward:

Eh�qx; qy; z � l� � E0�qx; qy; z � l� exp�ÿihu�z � l��
� R1�qx; qz�;R1�qx; qz�

� �h=�1 if =���< 0

�h=�2 if =���> 0,

� �12�

where � � � ~�2 ÿ 4�h�ÿh�1=2, �1;2 � 1
2 �ÿ ~�� ��, ~� � �1� b��0ÿ

qz ÿ qx cot �1.

By analogy with (11), the explicit expression for

E0�qx; qy; z � l� is de®ned as

E0�qx; qy; z � l� � �E0�qx; qy; z � 0� exp�ÿiqx cot �1l�

�0�qx; qy; z � l��qx;qy

: �13�
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Figure 1
Diffraction geometry used in the theoretical analysis.
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In the simplest case when the surface layer is homogeneous in

the XY plane, the expressions (11)±(13) are reduced to

E0�qx; qy; z � l� � E0�qx; qy; z � 0�

� exp i
Rl
0

~� dzÿ hu�z � l�
� �� �

R1�qx; qz�;

�14�
which describes the contribution of the substrate to the scat-

tered wave.

3. Coherent and diffuse scattering

Let us assume that the surface has distortions of the structure

(e.g. microdefects). The atomic displacement function in this

case can be represented as a sum u�r� � hu�r�i � �u�r�, where

the ®rst term describes the averaged displacements and the

second one the random deviations from the average. The

presence of defects in the surface layer causes the splitting of

the re¯ected intensity in coherent and incoherent (diffuse)

components. The general expression for the amplitude of the

coherently scattered wave is obtained by statistical averaging

of (10) over random displacements. Hereinafter, we suppose

that the distorted layer is on the perfect substrate, so that the

averaging concerns only the second term in (10). As a result,

we get for the coherent amplitude in reciprocal space the

following expression:

Ec
h�q� � hEh�q�i

� Êh�qx; qy; z � l� � �i=2�� Rl
0

dz
R�1
ÿ1

dx
R�1
ÿ1

dy �h�r�

� f �r���r� expfÿi�qr� hhu�r�i�gE0�xÿ cot �1z; y; 0�;
�15�

where f �r� � hexp�ÿih�u�r��i is the static Debye±Waller

factor.

The distribution of the coherent intensity in the reciprocal

space is written as

Ic
h�q� � jEc

h�q�j2: �16�
The distribution of the diffuse intensity in the reciprocal space

is found from the following expression:

Id
h �q� � hEh�q�E�h�q�i ÿ hEh�q�ihE�h�q�i:

With the introduction of the vector q � rÿ r0, this results in

Id
h �q� � �2��ÿ2

Rl
0

dz
Rlÿz

ÿz

d�z

R�1
ÿ1

dx
R�1
ÿ1

d�x

R�1
ÿ1

dy
R�1
ÿ1

d�y

� ��h�r� q���h�r���r� q����r�
� exp

ÿÿ ifqq� h�hu�r� q�i ÿ hu�r�i�g�
� ÿhexpfÿih��u�r� q� ÿ �u�r��gi ÿ f �r� q�f �r��
� E0�x� �x ÿ cot �l�z� �z�; y� �y; 0�
� E�0�xÿ cot �lz; y; 0�	:

In the following, we suppose that the linear size of defects is

small compared to the distance over which the wave functions

present signi®cant variations. This assumption allows us,

introducing the correlation function

G�r; q� � ÿhexpfÿih��u�r� q� ÿ �u�r��gi ÿ f 2�r��=�1ÿ f 2�r��
�17�

and the correlation volume

��r; q� � �2��ÿ2
R�1
ÿ1

dq G�r; q� exp
ÿÿ ifqq� h�hu�r� q�i

ÿ hu�r�i�g� exp�i�1� b��0�r��z�; �18�
to present the expression for distribution of the diffusely

scattered intensity in reciprocal space in the form

Id
h �q� �

Rl
0

dz
R�1
ÿ1

dx
R�1
ÿ1

dy j�h�r�j2�1ÿ f 2�r����r; q�

� exp
n
ÿ Rz

0

��x� cot �1�sÿ z�; y; s� � b��x

ÿ cot �2�sÿ z�; y; s� ds
o

I0�xÿ cot �1z; y; 0�: �19�

In (19), � � 2=��0� is the photoelectric absorption coef®cient.

As a special case of (16) and (19), the expressions for

coherently and diffusely scattered intensity for double- and

triple-crystal diffractometers may be obtained. The only

change to (19) in both cases is the correlation-volume trans-

formation. For the triple-crystal scheme, the expressions must

be integrated along the line parallel to the qy axis and passing

through a considered point in the plane of diffraction. As a

result, the correlation volume transforms to correlation area

��r; qx; qz� �
R�1
ÿ1

dqy��r; q�

� �1=2�� R�1
ÿ1

d�z

R�1
ÿ1

d�x

ÿ
exp�ÿi�qz�z � qx�x��

� exp�i�1� b��0�r��z�
� expfÿih�hu�x� �x; y; z� �z�i
ÿ hu�r�i�G�r; �x; 0; �z�

�
: �20�

With the same integration, the coherent intensity takes the

form

Ic
h�qx; qz� �

R�1
ÿ1

dqy Ic
h�q� �

R�1
ÿ1

dy jEc
h�qx; y; qz�j2; �21�

where Ec
h�qx; y; qz� designates the inverse Fourier transfor-

mation of Ec
h�qx; qy; qz� over qy. In particular, the amplitude of

the coherent wave from the surface layer becomes

Ec
h; layer�qx; y; qz� � �i=�2��1=2� Rl

0

dz
R�1
ÿ1

dx �h�r�f �r�

� expfÿi�qzz� qxx� hhu�r�i�g
���r�E0�xÿ cot �1z; y; 0�: �22�

The transition to the double-crystal scheme is realized by the

integration of (16) and (19) over the planeÿqz � qx cot �2 � �
intersecting the qz axis at the point qz � ÿ�. The correlation

volume transforms to correlation length



��r; �� > � R�1
ÿ1

dqx

R�1
ÿ1

dqy��r; qx; qy;ÿ�� qx cot �2�

� R�1
ÿ1

d� exp�i��� exp�i�1� b��0�r���

� expfÿih�hu�xÿ � cot �2; y; z� ��i ÿ hu�x; y; z�i�g
�G�r;ÿ� cot �2; 0; ��: �23�

Accordingly, the coherent intensity in this case takes the form

Ic
h��� �

R�1
ÿ1

dqx

R�1
ÿ1

dqy Ic
h�qx; qy;ÿ�� qx cot �2�

� R�1
ÿ1

dx
R�1
ÿ1

dy jEc
h�x; y; ��j2; �24�

where Ec
h�x; y; �� designates the inverse Fourier transforma-

tion of Ec
h�qx; qy; qz� over qy and qx after replacement

qz � qx cot �2 ÿ �. As an example, the amplitude of the

coherent wave from the surface layer takes the form

Ec
h; layer�x; y; �� � Rl

0

dz �h�x0; y; z�f �x0; y; z���x0; y; z�

� expfi��zÿ hhu�x0; y; z�i�g
� E0�x0 ÿ cot �1z; y; 0�jx0�xÿcot �2z: �25�

4. Models of defects

Let us consider some simple models of defects that have an

explicit form for static factor and correlation volume. In the

following, it is convenient to present them in the equivalent

form (Bushuev, 1988). In the case of small defect concentra-

tion C (CVc � 1, Vc is the unit-cell volume), the static factor

and the correlation function may be expressed as

f � exp ÿC
R

dr D�r�� � �26�
and

G�r; q� � fC=�1ÿ f 2�r��g R dr0D�r0 � q�D��r0�;
where D�r� � 1ÿ exp�ÿih�u�r��.

As a result, the correlation volume is written as follows:

��r; q� � fC=4�2�1ÿ f 2�r��g R dr0 exp�iqr0�D��r0� exp�ihhu�r�i�
� R dq exp�ÿiq�r0 � q�D�r0 � q� exp�ÿihhu�r� q�i�:

Assuming that within the defect volume the mean displace-

ments are constant (a case of small radius of defects or slowly

varying average parameters of the lattice), the difference

hu�r� q�i ÿ hu�r�i may be replaced by an equivalent differ-

ence hu�r0 � q�i ÿ hu�r0�i that results in the alternative

expression for �:

��r; q� � fC=4�2�1ÿ f 2�r��gjD�q�j2; �27�
where

D�q� � R dr exp�ÿiqr�D�r� exp�ÿihhu�r�i�:
The calculations of the static factor and the correlation volume

for the A±C models are based on expressions (26) and (27).

These models describe the spherically symmetrical clusters

and the displacement function depends on the distance from

the center of the cluster only.

4.1. Spherical amorphous clusters without elastic deforma-
tions (model A)

The simplest case of the defect crystal is the model of

randomly distributed spherical clusters without elastic defor-

mations out of the cluster (HolyÂ, 1982; Bushuev, 1988). The

atomic displacement function for the model has the simple

form

�u�r� � arbitrary value; jrj � Rd

0; jrj > Rd,

�
where Rd is the cluster radius.

The corresponding expressions for D(r), f and D(q) are

written (see, for instance, Punegov & Pavlov, 1996)

D�r� � 1; jrj � Rd

0; jrj>Rd,

�
f � exp�ÿCVcl� �28�

D�q� � Vcl3�sin�qRd� ÿ qRd cos�qRd��=�qRd�3; �29�
where Vcl � 4

3�R3
d is the cluster volume.

4.2. Spherical amorphous clusters with Coulomb-like
decreased displacements out of cluster (model B)

The strict approach to the problem in the framework of the

elasticity theory of an isotropic medium (Teodosiu, 1982)

allows the random displacements function of the spherical

cluster to be presented in the form

�u�r� � arbitrary value; jrj � Rd

Ar=r3; jrj > Rd,

�
where A is determined by the inner cluster radius Rd and its

strength ", A � "R3
d. The defect strength in its turn is

proportional to the crystal volume change owing to a defect

insertion into the crystal (HolyÂ & HaÈrtwig, 1988).

With the atomic displacement function, the static factor is

written as

f � exp
ÿÿ C�4�R3

d=15�f3�sin ~A= ~A� � 2 cos ~Aÿ 4 ~A sin ~A

� 4�2� ~A3�1=2FresnelC��2 ~A=��1=2�g�; �30�
where ~A � Ajhj=R2

d and the Fresnel cosine integral is de®ned

as follows:

FresnelC�x� � Rx
0

cos���=2�t2� dt:

Under condition "Rdh � 1, the explicit expressions for D(r)

and D(q) take the form

D�r� � 1; jrj � Rd

iA�hr=r3�; jrj > Rd

�
D�q� � Vcl3�sin�qRd� ÿ qRd cos�qRd��=�qRd�3

� f�4�A�h � q�=q3��sin�qRd�=Rd�g: �31�
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The expressions (30) and (31) were derived by Punegov &

Pavlov (1996). Deformations out of clusters cause the

appearance of the second term in D(q) [compare equations

(29) and (31)], which has singularity at the point q � 0. It may

be eliminated if we assume that the deformation ®elds of the

clusters are vanishing at some average distance RI from the

center of the cluster. This assumption seems to be correct

because of various cluster displacement ®elds overlapping.

The model C is based on this assumption.

4.3. Spherical amorphous Coulomb clusters with cut-off
displacements (model C)

In contrast to model B, the displacement function is

obtained as

�u�r� �
arbitrary value; jrj < Rd

�Br=r3� ÿ Fr; Rd � jrj � R1

0; jrj > R1,

8<:
where B � AR3

1=�R3
1 ÿ R3

d�, F � A=�R3
1 ÿ R3

d�.
With (26), the expression for f is obtained as

f � exp ÿC Vcl �
4�

jhj
ZR1

Rd

dr r2 sin�jhj�Brÿ2 ÿ Fr��
�Brÿ2 ÿ Fr�

8<:
9=;

0B@
1CA: �32�

Under the same condition as for model B, i.e. "Rdh � 1, we

have

D�r� �
1; jrj < Rd

ihr�B=r3 ÿ F�; Rd � jrj � R1

0; jrj > R1

8<:
and

D�q� � Vcl3�sin�qRd� ÿ qRd cos�qRd��=�qRd�3
� �4�B�h � q�=q3��sin�qRd�=Rd ÿ sin�qR1�=R1�
� �4�F�h � q�=q5�f�qR1�2 sin�qR1�
ÿ 3�sin�qR1� ÿ qR1 cos�qR1�� ÿ �qRd�2 sin�qRd�
� 3�sin�qRd� ÿ qRd cos�qRd��g: �33�

4.4. Mosaic crystal model (model D)

Following Darwin theory (Darwin, 1922), we assume the

crystal consists of a large number of crystalline blocks mis-

oriented at a random angle � and shifted randomly with

respect to each other (see Fig. 2). The rotation of a mosaic

block by an angle � around the y axis causes a displacement of

an arbitrary point (x,y,z) of the block by the vector �u, whose

components in the plane of diffraction under condition �� 1

are: �ux � �z, �uz � ÿ�x. The corresponding atomic dis-

placement function has the form

h�u�x; y; z� � ÿh��ux sin '� �uz cos '�;
where ' is an inclination angle of the atomic planes (' is

positive in the case of grazing incidence).

In the following, we assume the relative displacements of

the blocks to be comparable with the X-ray wavelength �. This

allows the phase correlation of waves scattered by various

blocks to be discarded, i.e. to consider the mosaic crystal as an

array of independently scattering ideal blocks. For such a

crystal model, the static factor is equal to zero (f � 0) and the

correlation function takes the form

G�q� � p�q� R�1
ÿ1

d�W��� exp�iB���z sin 'ÿ �x cos '��;

where B � 4� sin �B=�; p(q) is the probability that two points

being distant from each other on vector q belong to the same

block; W(�) is the block misorientation distribution function.

Hereinafter, the Gaussian distribution with half-width at half-

maximum �m is used, i.e.

W��� � ��ln 2�=��1=2�1=�m� exp�ÿ ln 2��2=�2
m��:

As a result, we have

G�q� � p�q� expf�ÿB2�2
m��z sin 'ÿ �x cos '�2�=4 ln 2g: �34�

The explicit expression for the correlation volume of a mosaic

crystal is obtained by the general expression (18) and

dependent on the speci®c probability function p(q) deter-

mined by the shape and size of the mosaic blocks. We consider

the mosaic blocks in the form of a parallelepiped with arrisses

lx, ly and lz directed along the coordinate axes. In this case, the

probability function takes the form

p�q� � px��x�py��y�pz��z�;
where

pi��i� � 1ÿ j�ij=li; j�ij � li

0; otherwise,

�
i � x; y; z: �35�

5. Instrumental function

In order to take into account the divergence of the beam

incident on the sample and the angular re¯ectivity depen-

dence of the analyzer crystal, the following considerations

were examined. Let us assume that the integration over the qy

axis of the intensity I(qx,qy,qz) scattered by the sample is

already performed. So we consider the projection of the

I(qx,qy,qz) onto the plane (qx,qz) of diffraction. Deviation " of

Figure 2
Schematic image of the mosaic block crystal model.



the beam ®xed by the analyzer leads to the displacement k"
(k � 2�=� is the wave number) of the considered point (qx,qz)

in the reciprocal space along the q" axis (see Fig. 3). The

intensity ~I�qx; qy� after the analyzer is therefore de®ned by the

convolution of the scattered intensity I(qx,qz) and the re¯ec-

tivity angular dependence RA(") of the analyzer,

~I�qx; qz�

� R�1
ÿ1

dq0x I�q0x; qz � cot �2�qx ÿ q0x��RA��qx ÿ q0x�=k sin �2�;

or, after some transformations,

~I�qx; qz� � k sin �2

R�1
ÿ1

d" I�qx ÿ k" sin �2; qz � k" cos �2�RA�"�:

Similarly, the deviation � of the incident beam onto the sample

results in a displacement k� of the ®xed point in the reciprocal

space along the q� axis (see Fig. 3). So the convolution of
~I�qx; qz� with the re¯ectivity angular dependence RM(�) of the

monochromator has to be made. This results in the ®nal form

of the intensity ID�qx; qz� ®xed by the detector in the triple-

crystal diffractometer:

ID�qx; qz� �
R�1
ÿ1

d� ~I�qx � k� sin �1; qz � k� cos �1�RM���

� k sin �2

R�1
ÿ1

d�RM��� R�1
ÿ1

d"RA�"�I�qx � k� sin �1

ÿ k" sin �2; qz � k� cos �1 � k" cos �2�: �36�

6. Results and discussion

Numerical simulations of diffuse intensity distribution (RSM)

for the models considered above are presented in Figs. 4±7.

The model of spherical amorphous Coulomb clasters with cut-

off displacements (model C) is the most general among those

considered. In the limit of R1 � Rd, it reduces to the model A

and assuming R1!1 it transforms to model B. Therefore, we

restrict ourselves to the analysis of model C (Figs. 4 and 5).

The parameters of the cluster are: inner radius Rd � 0:1 mm,

external radius R1 � 0:232 mm. The last value corresponds to

the defect concentration C � 10 mmÿ3. Defect strength is

varied and equal to " � 10ÿ5 (Fig. 4a), " � 10ÿ4 (Fig. 4b) and

" � 10ÿ3 (Fig. 5a). For numerical calculations, the parameters

of the 004 re¯ection of Cu K�1 radiation of a GaAs crystal

were used. As follows from Fig. 4(a), the diffuse scattering

distribution in the case of small defect strength is the same as

for model A, i.e. in the absence of displacement ®elds out of

the cluster. The distribution is spherically symmetrical in this

case. Increase in the strength results in the loss of symmetry,

shifting of the central maximum along the reciprocal-lattice
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Figure 3
The in¯uence of the instrumental function on the theoretical RSMs
formation.

Figure 4
Calculated two-dimensional diffuse-scattering distributions for the model
of spherical Coulomb clusters with cut-off displacement ®elds. For
parameters used for the simulation, see text. Defect strength " is (a) 10ÿ5

and (b) 10ÿ4.
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vector (Fig. 4b) and its splitting into two peaks at greater

values (Fig. 5a). The intensity distribution far from the reci-

procal-lattice node (not shown on Figs. 4 and 5) remains the

same and determined by the structure of the inner part of

the cluster. In contrast to Figs. 4 and 5(a), which represent

intensity distribution integrated over qy, Fig. 5(b) shows the

cross section of the distribution in the plane of diffraction. It

corresponds to the case of a high horizontally collimated

primary beam and a very narrow vertical slit mounted in front

of the detector. In comparison with the former case, it has

more distinct minima and maxima although the shape of the

distribution is kept safe.

Let us consider the intensity distribution from a mosaic

crystal (model D). Figs. 6 and 7 represent symmetrical and

asymmetrical re¯ection, respectively. The parameters of the

imaging crystal used for numerical calculations are the

following. We consider the cubic mosaic block with arris

l � 1 mm, assuming one pair of its planes to be parallel to the

diffraction plane. The block misorientation-angle distribution

parameter is �m � 5000. The Bragg angle and inclination angle

of the scattering atomic planes are �B � 30� and ' � 0� for

symmetrical re¯ection and �B � 50� and ' � 40� (grazing

incidence) for asymmetrical re¯ection. Figs. 6(a) and 7(a) are

the true two-dimensional distribution while Figs. 6(b) and 7(b)

Figure 6
Calculated two-dimensional diffuse-scattering distributions for the
mosaic crystal model. Symmetrical re¯ection. For parameters used for
the simulation, see text. The RSM (a) before and (b) after convolution
with the instrumental function are shown.

Figure 5
Distribution (a) is the same as that in Fig. 4 but with " equal to 10ÿ3 and
(b) cross section of the corresponding three-dimensional distribution in
the plane of diffraction.



are the convolution of that with the instrumental function of

the triple-crystal diffractometer. As re¯ectivity angular func-

tions of the monochromator and analyzer, we used Gaussian

distributions with half-width at half-maximum �M and �A,

respectively. For the distributions shown in Figs. 6(b) and 7(b),

these parameters are �M � �A � 1000.
The most characteristic feature of our mosaic block model is

the existence of intensity oscillations in the qz direction in the

case of symmetrical re¯ection (Fig. 6a). Its period coincides

with the analogous value for the coherent intensity from the

layer of thickness equal to the height of the block. Such

behavior is completely determined by the Fourier transform of

the pz(�) factor in the probability function. On the contrary,

the asymmetrical re¯ection does not reveal those oscillations

(Fig. 7a) since, in this case, the intensity in the qz direction is

de®ned by the Fourier transform of the entire correlation

function. For the same reason, these oscillations are absent in

the qx direction for arbitrary re¯ection (symmetrical or

asymmetrical). It is noteworthy that convolution with the

instrumental function for relatively large values of �M and

�A smears out the pattern (Figs. 6b, 7b), with disappearing

oscillations. However, for smaller values of �M and �A

(more perfect monochromator and analyzer), in particular 500,
the oscillations remain.

7. Conclusions

We have developed a general approach to the kinematical

theory of X-ray diffraction in crystals containing random and

non-random deformation ®elds. For simple models of defects,

namely spherically symmetrical clusters and mosaic crystals,

the numerical diffuse scattering distribution in reciprocal

space has been analyzed. Although the main attention was

investigation of diffuse scattering, we have obtained general

expressions describing the coherent scattering distribution in

direct and reciprocal space. The theory will be useful during

interpretation of experimental data. Towards this end, the

in¯uence of the instrumental function on RSMs was shown.

APPENDIX A
The components qx, qz of the displacement from the reciprocal

point are related to the deviation angles ! and " of the sample

and analyzer by the expressions

qx � h! cos 'ÿ k" sin �2

qz � ÿh! sin 'ÿ k" cos �2

�37�

or

! � �qx cos �2 ÿ qz sin �2�=h cos �B

" � ÿ�qx sin '� qz cos '�=k cos �B;
�38�

where k � 2�=� is the wave number, h � 2k sin �B is the

reciprocal-lattice-vector magnitude.

Let us ®nd the expression for angular parameter � via qx

and qz. As de®ned,

� � �2�=�
h�! sin 2�B:

Substituting the expression for ! from (37), we obtain

� � �2�=� sin �2���qx cos �2 ÿ qz sin �2�=h cos �B�2 sin �B cos �B

� 2k sin �B��cot �2qx ÿ qz�=h�
� cot �2qx ÿ qz:

So, for an arbitrary geometry of Bragg diffraction (symme-

trical or asymmetrical), the angular parameter � is expressed

via qx, qz as follows:

� � cot �2qx ÿ qz: �39�
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Figure 7
Same as Fig. 6 but for asymmetrical re¯ection.
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